Transformer

BERT

BertModel

class BertModel(BertPreTrainedModel):
    def __init__(self, config, add_pooling_layer=True):
        self.config = config

        self.embeddings = BertEmbeddings(config)
        self.encoder = BertEncoder(config)

        self.pooler = BertPooler(config) if add_pooling_layer else None

    def forward(self, ...):
        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
            inputs_embeds=inputs_embeds,
            past_key_values_length=past_key_values_length,
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )

BertEmbeddings

# src/transformers/models/bert/modeling_bert.py

class BertEmbeddings(nn.Module):

    def __init__(self, config):
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, ...):
        inputs_embeds = self.word_embeddings(input_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)
        position_embeddings = self.position_embeddings(position_ids) # absolute
        embeddings = inputs_embeds + token_type_embeddings + position_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

BertEncoder


class BertEncoder(nn.Module):
    def __init__(self, config):
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(self, ...):
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                if use_cache:
                    logger.warning(
                        "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                    )
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1],)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    next_decoder_cache,
                    all_hidden_states,
                    all_self_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output



```python
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = BertModel.from_pretrained("bert-base-uncased")
>>> model.config
BertConfig {
  "_name_or_path": "bert-base-uncased",
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "classifier_dropout": null,
  "gradient_checkpointing": false,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "pad_token_id": 0,
  "position_embedding_type": "absolute",
  "transformers_version": "4.22.2",
  "type_vocab_size": 2,
  "use_cache": true,
  "vocab_size": 30522
}

>>> model.eval()
BertModel(
  (embeddings): BertEmbeddings(
    (word_embeddings): Embedding(30522, 768, padding_idx=0)
    (position_embeddings): Embedding(512, 768)
    (token_type_embeddings): Embedding(2, 768)
    (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
    (dropout): Dropout(p=0.1, inplace=False)
  )
  (encoder): BertEncoder(
    (layer): ModuleList(
      (0): BertLayer(
        (attention): BertAttention(
          (self): BertSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
            (key): Linear(in_features=768, out_features=768, bias=True)
            (value): Linear(in_features=768, out_features=768, bias=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (output): BertSelfOutput(
            (dense): Linear(in_features=768, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
        (intermediate): BertIntermediate(
          (dense): Linear(in_features=768, out_features=3072, bias=True)
          (intermediate_act_fn): GELUActivation()
        )
        (output): BertOutput(
          (dense): Linear(in_features=3072, out_features=768, bias=True)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
      )
      (1): BertLayer(
        (attention): BertAttention(
          (self): BertSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
            (key): Linear(in_features=768, out_features=768, bias=True)
            (value): Linear(in_features=768, out_features=768, bias=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (output): BertSelfOutput(
            (dense): Linear(in_features=768, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
        (intermediate): BertIntermediate(
          (dense): Linear(in_features=768, out_features=3072, bias=True)
          (intermediate_act_fn): GELUActivation()
        )
        (output): BertOutput(
          (dense): Linear(in_features=3072, out_features=768, bias=True)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
      )
      ...
      (11): BertLayer(
        (attention): BertAttention(
          (self): BertSelfAttention(
            (query): Linear(in_features=768, out_features=768, bias=True)
            (key): Linear(in_features=768, out_features=768, bias=True)
            (value): Linear(in_features=768, out_features=768, bias=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (output): BertSelfOutput(
            (dense): Linear(in_features=768, out_features=768, bias=True)
            (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
        (intermediate): BertIntermediate(
          (dense): Linear(in_features=768, out_features=3072, bias=True)
          (intermediate_act_fn): GELUActivation()
        )
        (output): BertOutput(
          (dense): Linear(in_features=3072, out_features=768, bias=True)
          (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
          (dropout): Dropout(p=0.1, inplace=False)
        )
      )
    )
  )
  (pooler): BertPooler(
    (dense): Linear(in_features=768, out_features=768, bias=True)
    (activation): Tanh()
  )
)

T5

from transformers import T5Tokenizer, T5Model
model = T5Model.from_pretrained("t5-small")
>>> model.config
T5Config {
  "_name_or_path": "t5-small",
  "architectures": [
    "T5WithLMHeadModel"
  ],
  "d_ff": 2048,
  "d_kv": 64,
  "d_model": 512,
  "decoder_start_token_id": 0,
  "dense_act_fn": "relu",
  "dropout_rate": 0.1,
  "eos_token_id": 1,
  "feed_forward_proj": "relu",
  "initializer_factor": 1.0,
  "is_encoder_decoder": true,
  "is_gated_act": false,
  "layer_norm_epsilon": 1e-06,
  "model_type": "t5",
  "n_positions": 512,
  "num_decoder_layers": 6,
  "num_heads": 8,
  "num_layers": 6,
  "output_past": true,
  "pad_token_id": 0,
  "relative_attention_max_distance": 128,
  "relative_attention_num_buckets": 32,
  "task_specific_params": {
    "summarization": {
      "early_stopping": true,
      "length_penalty": 2.0,
      "max_length": 200,
      "min_length": 30,
      "no_repeat_ngram_size": 3,
      "num_beams": 4,
      "prefix": "summarize: "
    },
    "translation_en_to_de": {
      "early_stopping": true,
      "max_length": 300,
      "num_beams": 4,
      "prefix": "translate English to German: "
    },
    "translation_en_to_fr": {
      "early_stopping": true,
      "max_length": 300,
      "num_beams": 4,
      "prefix": "translate English to French: "
    },
    "translation_en_to_ro": {
      "early_stopping": true,
      "max_length": 300,
      "num_beams": 4,
      "prefix": "translate English to Romanian: "
    }
  },
  "transformers_version": "4.22.2",
  "use_cache": true,
  "vocab_size": 32128
}
>>> model.eval()
T5Model(
  (shared): Embedding(32128, 512)
  (encoder): T5Stack(
    (embed_tokens): Embedding(32128, 512)
    (block): ModuleList(
      (0): T5Block(
        (layer): ModuleList(
          (0): T5LayerSelfAttention(
            (SelfAttention): T5Attention(
              (q): Linear(in_features=512, out_features=512, bias=False)
              (k): Linear(in_features=512, out_features=512, bias=False)
              (v): Linear(in_features=512, out_features=512, bias=False)
              (o): Linear(in_features=512, out_features=512, bias=False)
              (relative_attention_bias): Embedding(32, 8)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (1): T5LayerFF(
            (DenseReluDense): T5DenseActDense(
              (wi): Linear(in_features=512, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=512, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): ReLU()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
      ...
      (5): T5Block(
        (layer): ModuleList(
          (0): T5LayerSelfAttention(
            (SelfAttention): T5Attention(
              (q): Linear(in_features=512, out_features=512, bias=False)
              (k): Linear(in_features=512, out_features=512, bias=False)
              (v): Linear(in_features=512, out_features=512, bias=False)
              (o): Linear(in_features=512, out_features=512, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (1): T5LayerFF(
            (DenseReluDense): T5DenseActDense(
              (wi): Linear(in_features=512, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=512, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): ReLU()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
    )
    (final_layer_norm): T5LayerNorm()
    (dropout): Dropout(p=0.1, inplace=False)
  )
  (decoder): T5Stack(
    (embed_tokens): Embedding(32128, 512)
    (block): ModuleList(
      (0): T5Block(
        (layer): ModuleList(
          (0): T5LayerSelfAttention(
            (SelfAttention): T5Attention(
              (q): Linear(in_features=512, out_features=512, bias=False)
              (k): Linear(in_features=512, out_features=512, bias=False)
              (v): Linear(in_features=512, out_features=512, bias=False)
              (o): Linear(in_features=512, out_features=512, bias=False)
              (relative_attention_bias): Embedding(32, 8)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (1): T5LayerCrossAttention(
            (EncDecAttention): T5Attention(
              (q): Linear(in_features=512, out_features=512, bias=False)
              (k): Linear(in_features=512, out_features=512, bias=False)
              (v): Linear(in_features=512, out_features=512, bias=False)
              (o): Linear(in_features=512, out_features=512, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (2): T5LayerFF(
            (DenseReluDense): T5DenseActDense(
              (wi): Linear(in_features=512, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=512, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): ReLU()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
      ...
      (5): T5Block(
        (layer): ModuleList(
          (0): T5LayerSelfAttention(
            (SelfAttention): T5Attention(
              (q): Linear(in_features=512, out_features=512, bias=False)
              (k): Linear(in_features=512, out_features=512, bias=False)
              (v): Linear(in_features=512, out_features=512, bias=False)
              (o): Linear(in_features=512, out_features=512, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (1): T5LayerCrossAttention(
            (EncDecAttention): T5Attention(
              (q): Linear(in_features=512, out_features=512, bias=False)
              (k): Linear(in_features=512, out_features=512, bias=False)
              (v): Linear(in_features=512, out_features=512, bias=False)
              (o): Linear(in_features=512, out_features=512, bias=False)
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
          (2): T5LayerFF(
            (DenseReluDense): T5DenseActDense(
              (wi): Linear(in_features=512, out_features=2048, bias=False)
              (wo): Linear(in_features=2048, out_features=512, bias=False)
              (dropout): Dropout(p=0.1, inplace=False)
              (act): ReLU()
            )
            (layer_norm): T5LayerNorm()
            (dropout): Dropout(p=0.1, inplace=False)
          )
        )
      )
    )
    (final_layer_norm): T5LayerNorm()
    (dropout): Dropout(p=0.1, inplace=False)
  )
)
model = T5ForConditionalGeneration.from_pretrained("t5-small")
>>> model.config
# same as T5Model
>>> model.eval()
T5ForConditionalGeneration(
  ...
  (lm_head): Linear(in_features=512, out_features=32128, bias=False)
)

GPT

model = OpenAIGPTModel.from_pretrained("openai-gpt")
>>> model.config
OpenAIGPTConfig {
  "_name_or_path": "openai-gpt",
  "afn": "gelu",
  "architectures": [
    "OpenAIGPTLMHeadModel"
  ],
  "attn_pdrop": 0.1,
  "embd_pdrop": 0.1,
  "initializer_range": 0.02,
  "layer_norm_epsilon": 1e-05,
  "model_type": "openai-gpt",
  "n_ctx": 512,
  "n_embd": 768,
  "n_head": 12,
  "n_layer": 12,
  "n_positions": 512,
  "n_special": 0,
  "predict_special_tokens": true,
  "resid_pdrop": 0.1,
  "summary_activation": null,
  "summary_first_dropout": 0.1,
  "summary_proj_to_labels": true,
  "summary_type": "cls_index",
  "summary_use_proj": true,
  "task_specific_params": {
    "text-generation": {
      "do_sample": true,
      "max_length": 50
    }
  },
  "transformers_version": "4.22.2",
  "vocab_size": 40478
}
OpenAIGPTModel(
  (tokens_embed): Embedding(40478, 768)
  (positions_embed): Embedding(512, 768)
  (drop): Dropout(p=0.1, inplace=False)
  (h): ModuleList(
    (0): Block(
      (attn): Attention(
        (c_attn): Conv1D()
        (c_proj): Conv1D()
        (attn_dropout): Dropout(p=0.1, inplace=False)
        (resid_dropout): Dropout(p=0.1, inplace=False)
      )
      (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
      (mlp): MLP(
        (c_fc): Conv1D()
        (c_proj): Conv1D()
        (act): NewGELUActivation()
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    )
    ...
    (11): Block(
      (attn): Attention(
        (c_attn): Conv1D()
        (c_proj): Conv1D()
        (attn_dropout): Dropout(p=0.1, inplace=False)
        (resid_dropout): Dropout(p=0.1, inplace=False)
      )
      (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
      (mlp): MLP(
        (c_fc): Conv1D()
        (c_proj): Conv1D()
        (act): NewGELUActivation()
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    )
  )
)

FasterTransformer

NVIDIA Transformer 推理前向优化方案。

References