Let
x1,x2,…xn∈Rm
find
x^∈Rm
such that
mink=1∑n∣θk∣
where
cosθk=∣∣xk∣∣⋅∣∣x^∣∣xk⋅x^
cos defines ∀xj,xk∈Rm
cosθ=∣∣xj∣∣xj⋅∣∣xk∣∣xk
Equivalent form
min−k=1∑n∣∣xk∣∣⋅∣∣x^∣∣xk⋅x^=min−c1k=1∑n∣∣xk∣∣1(l=1∑mxkl⋅x^l)
under condition
l=1∑m(x^l)2=c2
where c∈R,c>0.
L(x^1,x^2,…,x^m,λ)=−c1k=1∑n∣∣xk∣∣1(l=1∑mxkl⋅x^l)+λ(l=1∑m(x^l)2−c2)
For 1≤l≤n, let
∂x^l∂L(x^1,x^2,…,x^m,λ)=−c1k=1∑n∣∣xk∣∣xkl+2λx^l=0
then
x^l=2λc1k=1∑n∣∣xk∣∣xkl
replace x^l with above expression
l=1∑m(2λc1k=1∑n∣∣xk∣∣xkl)2=c2
then
2λc=c1⎝⎛l=1∑m(k=1∑n∣∣xk∣∣xkl)2⎠⎞1/2
x^l=c⋅(k=1∑n∣∣xk∣∣xkl)⎝⎛l=1∑m(k=1∑n∣∣xk∣∣xkl)2⎠⎞−1/2
For ∣∣xk∣∣=1 and c=1,
x^l=(k=1∑nxkl)⎝⎛l=1∑m(k=1∑nxkl)2⎠⎞−1/2=xˉl(l=1∑mxˉl2)−1/2=∣∣xˉ∣∣xˉl
x^=∣∣xˉ∣∣xˉ
∣∣xj−xk∣∣2=xjTxj−2xjTxk+xkTxk
∣∣xj−xk∣∣2=2(1−xjTxk)