Let Q∈Rn×n be a symmetric matrix.
vi,vj∈Rn,vi=vj=0 are Q-orthogonal w.r.t. Q if
viTQvj=0.
Let Q be positive definite.
If v1,v2,…,vk are Q-orthogonal, then they are linear independent.
If vk=α1v1+⋯+αk−1vk−1, then
vkTQvk=vkTQ(α1v1+⋯+αk−1vk−1)=α1vkTQv1+⋯+αk−1vkTQvk−1=0
controversy with postive definite.
Let v1,v2,…,vn∈Rn vectors Q-orthogonal,
x0∈Rn be arbitrary starting point.
Assume
αk=−vkTQvkgkTvk
xk+1=xk+αkvk
gk=Qxk−b
then xn is the solution of Qx=b.
x∈Rnmin21xTQx−bTx
Matrix Q∈Rn×n is positive definite.
Qx=b,x∈Rn
Let v1,v2,…,vn∈Rn vectors Q-orthogonal, which is linear independent,
then ∀x∗∈Rn there exist α1,α2,…,αn∈R,
x∗=i=1∑nαivi=α1v1+α2v2+⋯+αnvn
viTQx∗=viTQ(α1v1+α2v2+⋯+αnvn)=αiviTQvi
αi=viTQviviTQx∗=viTQviviTb
x∗=i=1∑nαivi=i=1∑nviTQviviTbvi
Let x0∈Rn arbitrary,
v0αkxk+1gkvk+1βk=b−Qx0=−vkTQvkgkTvk=xk+αkvk=Qxk−b=−gk+1+βkvk=vkTQvkgk+1TQvk