If {vk}0n−1=(v0,v1,…,vn−1)
is an orthogonal basis of space Cn, which means
⟨vk,vl⟩=∣∣vk∣∣⋅∣∣vl∣∣⋅δk,l,
where
∣∣vk∣∣=⟨vk,vk⟩=(j=0∑n−1vk,j)21
Note that vk=(vk,0,vk,1,…vk,n−1)∈Cn and vk,j∈C.
then ∀f∈Cn,
f=k=0∑n−1⟨vk,vk⟩⟨f,vk⟩vk=k=0∑n−1∣∣vk∣∣⟨f,vk⟩⋅∣∣vk∣∣vk.
It is an orthonormal bases if ∀k,∣∣vk∣∣=1.
Suppose ∀k∈Z,∣∣vk∣∣=∣∣v∣∣, the above formula can be rewritten in matrix form,
f=∣∣v∣∣21[v0v1⋯vn−1]⎣⎢⎢⎢⎢⎡⟨f,v0⟩⟨f,v1⟩⋮⟨f,vn−1⟩⎦⎥⎥⎥⎥⎤=∣∣v∣∣21[v0v1⋯vn−1][vˉ0vˉ1⋯vˉn−1]Tf
that is
⎣⎢⎢⎢⎡f0f1fn−1⎦⎥⎥⎥⎤=∣∣v∣∣21⎣⎢⎢⎢⎢⎡v0,0v0,1⋮v0,n−1v1,0v1,1⋮v1,n−1⋯⋯⋮⋯vn−1,0vn−1,1⋮vn−1,n−1⎦⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎡vˉ0,0vˉ1,0⋮vˉn−1,0vˉ0,1vˉ1,1⋮vˉn−1,1⋯⋯⋮⋯vˉ0,n−1vˉ1,n−1⋮vˉn−1,n−1⎦⎥⎥⎥⎥⎤⎣⎢⎢⎢⎡f0f1fn−1⎦⎥⎥⎥⎤.
The construction of orthogonal bases in space Cn equals to find square matrix V such that VVˉT=∣∣v∣∣2.
The following shows the intuition to extend k∈N, i.e. orthogonal bases {vk}0∞,
For f∈L1(a,b),
extending to k∈Z, vk(x)∈L1(a,b),
respect to
⟨vk(x),vl(x)⟩=∫abvk(x)vˉl(x)dx=∣∣vk∣∣⋅∣∣vl∣∣⋅δk,l,
where ∀k∈Z,
∣∣vk∣∣=(∫abvk(x)vˉk(x)dx)21.
Then
f(x)=k=−∞∑∞∣∣vk∣∣⟨f(x),vk(x)⟩⋅∣∣vk∣∣vk(x)=k=−∞∑∞∣∣vk∣∣1(∫abf(x)vˉk(x)dx)⋅∣∣vk∣∣vk(x).
For f∈L1(R),
extending to t∈R, which is v(x,t)∈L1(R),
f(x)=∫−∞+∞∣∣v(t)∣∣1⟨f(x),v(x,t)⟩⋅∣∣v(t)∣∣v(x,t)dt=∫−∞+∞∣∣v(t)∣∣1(∫−∞+∞f(x)vˉ(x,t)dx)⋅∣∣v(t)∣∣v(x,t)dt.
where ∀t∈R,
∣∣v(t)∣∣=(∫−∞+∞v(x,t)vˉ(x,t)dx)21.